Il fitoplancton potenzialmente tossico nelle acque destinate alla molluschicoltura.

Martedì 27 maggio 2025 ore 10:00

Laura Sidari, Chiara Suraci - ARPA FVG

REALIZZATO DA:

SOS Laboratorio per lo studio degli ecosistemi acquatici

«Fitoplancton potenzialmente tossico nelle acque destinate alla molluschicoltura»

Trieste, 27 maggio 2025

Prima parte relatrice Laura Sidari (coll. tecn. prof. biologo):

- campionamento e analisi microscopica del fitoplancton e, in particolare, del fitoplancton potenzialmente tossico;
- specie potenzialmente tossiche presenti in Friuli Venezia Giulia;
- gestione della qualità del dato

Seconda parte relatrice Chiara Suraci (responsabile SOS):

- principali sindromi e tossine implicate;
- classificazione delle acque per la molluschicoltura;
- normativa e gestione del dato (early warning);
- fitoplancton e dati ambientali;
- tecniche analitiche molecolari.

UNI EN 15972:2012 - Qualità dell'acqua Guida all'esame quantitativo e qualitativo del fitoplancton marino

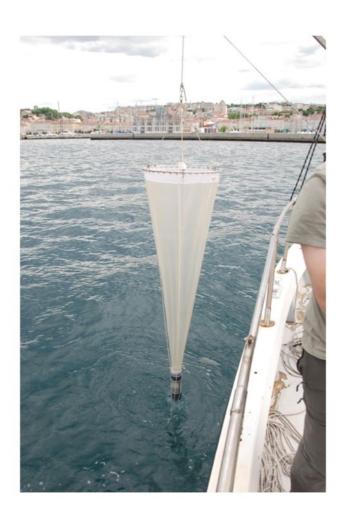
3.2 phytoplankton

community of free-living, suspended, mainly photosynthetic organisms in aquatic systems comprising Cyanobacteria and microscopic algae

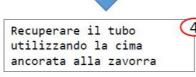
Come si campiona (UNI EN 15972:2012)...e per quale tipologia di analisi:

- <u>retinata</u> (verticale o orizzontale):
 - analisi qualitativa
- bottiglia Niskin:
 - analisi quantitativa a profondità discrete
- tubo (flessibile o rigido):

analisi quantitativa integrata della colonna d'acqua



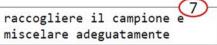
TUBO FLESSIBILE





TUBO FLESSIBILE: fasi di utilizzo

TUBO FLESSIBILE: fasi di utilizzo


Posizionare la parte terminale in un contenitore

Aprire il rubinetto

miscelare adeguatamente

Come si analizza (UNI EN 15972:2012 e

UNI EN 15204:2006):

- acclimatazione
- omogeneizzazione
- fissazione con LUGOL (neutro): 400 μl per 100 ml di sub-campione

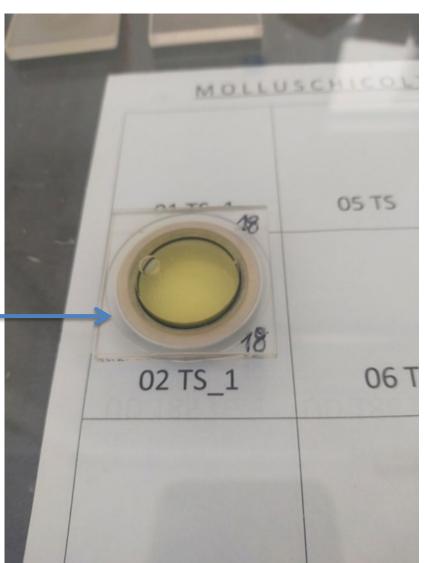
Come si analizza (UNI EN 15972:2012 e

UNI EN 15204:2006)

- dopo un'ulteriore fase di <u>omogeneizzazione</u> si mettono a <u>sedimentare</u> 25 ml di sub campione

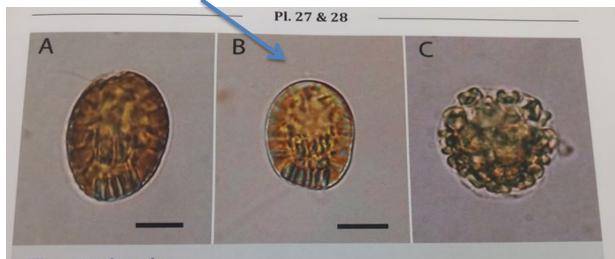
Come si analizza (UNI EN 15972:2012 e UNI EN 15204:2006):

- lasciare sedimentare al buio per almeno12h
- slittare la colonnina servendosi di un vetrino coprioggetto.



Come si analizza (UNI EN 15972:2012 e UNI EN 15204:2006):

camera di sedimentazione pronta per la lettura al microscopio


Come si analizza (UNI EN 15972:2012 e

UNI EN 15204:2006):

è <u>buona norma</u> mantenere un'aliquota di campione <u>non fissato</u> in frigorifero (7±3°C) per poter osservare gli organismi «in vivo» e ottenere informazioni importanti per la loro identificazione

(es. Kryptoperidinium foliaceum; Rafidoficeae)

Fibrocapsa japonica

Light micrographs. A–B. Live cells showing rod-shaped mucocysts located in the posterior part. A. Note the chloroplasts in the cell periphery. B. Note the nucleus located in the upper cell half. C. A cell fixed with Lugol's solution. Note that it is burst out because of fixative. Scale bars: $10~\mu m$.

Come si legge (UNI EN 15972:2012 e UNI EN 15204:2006):

lettura con microscopio ottico invertito (metodo di Utermöhl)

- a) Lettura per analisi qualitativa:
- tutto il vetrino elenco floristico.

- b) Lettura per analisi quantitativa:
- tutto il vetrino spostandosi lungo linee contigue orizzontali e verticali;
- mezzo vetrino se sono state contate almeno 400 cellule/vetrino;
- transetti;
- numero definito di campi casuali
 - concentrazione cell/l

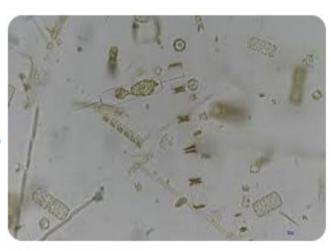
Cosa si trova in un vetrino:

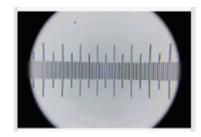
Le <u>due principali classi</u> di organismi fitoplanctonici marini sono:

- la classe delle Diatomee o Bacillarioficee (frustulo siliceo);
- la classe dei **Dinoflagellati** o **Dinoficee** a loro volta suddivisi in <u>tecati</u> (con placche cellulosiche) e <u>atecati</u>.

Altre classi:

Rafidoficee, Crisoficee, Primnesioficee, Euglenoficee, Silicoflagellati, Criptoficee e Cianoficee (o Cianobatteri).


Dinoflagellati (tecati e non) e Diatomee (microscopio ottico)


Cosa si deve <u>osservare</u> per <u>identificare</u>:

i principali parametri morfologici quali forma, lunghezza, larghezza, presenza di strutture accessorie, ornamentazioni, etc.

Arpa FVG

<u>Identificare</u> significa <u>attribuire un nome scientifico</u> all'organismo osservato:

es. Kryptoperidium (Genere) foliaceum (specie) (F. Stein) Lindemann 1924

Come identificare:

- 1) Manuali e chiavi (solo alcuni esempi) :
- Guida al riconoscimento del plancton dei mari italiani. Volume I –
 Fitoplancton. ICRAM e Ministero dell'Ambiente della tutela del
 Territorio e del Mare, 2006;
- Identifying Marine Phytoplankton. Edited by Carmelo R. Tomas Academic Press, 1997
- Chiave per la determinazione delle Peridinee pelagiche, Leopoldo Rampi e Michael Bernhard. CNEN 1980
- Toxic and Harmful Microalgae of the World Ocean/Micro-algues toxiques et nuisibles del l'océan mondial. P. Lassus et al., 2016. IOC Manuals and Guides, 68.

IOC Training Course and Identification Qualification in Harmful Marine Microalgae

Training Course

19 - 28 November 2025

Q Location

IOC Science and Communication Centre on Harmful Algae

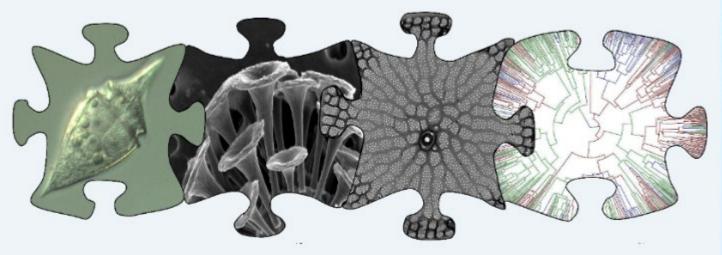
Universitetsparken 4 2100 Ø Copenhagen

Denmark

Organiser(s) & Staff

Staff

Mr. Henrik ENEVOLDSEN


2) Corsi:

Sei qui: Home News News 13th Advanced Phytoplankton Course - APC13 Identification, Taxonomy, Systematics

13th Advanced Phytoplankton Course - APC13 Identification, Taxonomy, Systematics

NEW DEADLINE - January 15, 2024

13th Advanced Phytoplankton Course - APC13 Identification, Taxonomy, Systematics

Stazione Zoologica Anton Dohrn, Naples, Italy, 6-26 October 2024

For More Information

Nomenclatura: sinonimie

Home Conte

search taxa Q

Q Genus

Species

E Literature

Images

Common Na

Lingulodinium polyedra (F.Stein) J.D.Dodge 1989

Publication Details

Lingulodinium polyedra (F.Stein) J.D.Dodge 1989: [271], 291, figs 1 H-I, 34-38

Published in: Dodge, J.D. (1989). Some revisions of the family Gonyaulacaceae (Dinophyceae) based on a scanning electron microscope study. *Botanica Marina* 32: 275-298, 42 figs, 2 tables.

Type Species

The type species (holotype) of the genus *Lingulodinium* is *Lingulodinium machaerophorum* (Deflandre & Cookson) D.Wall.

Status of Name

This name is currently regarded as a synonym of *Lingulaulax polyedra* (F.Stein) M.J.Head, K.N.Mertens & R.A.Fensome.

Source of Synonymy

Heer, O. (1865). *Die Urwelt der Schweiz*. Vol. 12-13 pp. xxix, 622, 11 plates, 1 map. Zürich: Druck und Verlag von Friedrich Schulthess.

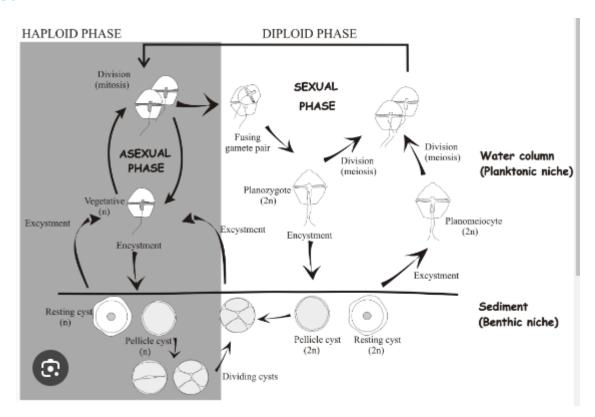
Basionym

Gonyaulax polyedra F.Stein

Palynology

Dual nomenclature in organic-walled dinoflagellate cysts I: concepts, methods and applications

Head Martin J. 1,*, Mertens Kenneth 2, Fensome Robert A. 3


- ¹ Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada
- ² Ifremer, LITTORAL, F-29900 Concarneau, France
- ³ Natural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
- * Corresponding author : Martin J. Head, email address : mjhead@brocku.ca

Cisti di dinoflagellati:

si trovano nei sedimenti ma anche nelle acque di zavorra delle navi

spp. registrate anche in Mediterraneo

spp. non registrate in Mediterraneo

spp. con dati incerti sulla distribuzione

?? dati incerti sulla tossicità

FITOPLANCTON PRODUTTORE DI BIOTOSSINE MARINE REGOLAMENTATE (REG. CE 853/2004)

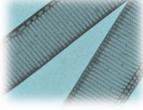
(rev. marzo 2025)

	Sindrome - Tossine	Organismi produttori	
Hydrophilic Toxins	Paralytic Shellfish Poisoning (PSP) Saxitossina (STX) e derivati	Alexandrium	andersonii, minutum, pacificum, affine(??), ostenfeldi (sin. A. peruvianum), leei (??), tamarense(??), australiense, fragae, catenella (sin. A. fundyense), tamiyavanichii
		Gymnodinium	G. catenatum
		Pyrdodinium	P. bahamense
		Centrodinium	C. punctatum
	Amnesic Shellfish Poisoning (ASP) Acido domoico (DA)	Pseudo-nitzschia	australis, brasiliana, caciantha, calliantha, cuspidata, delicatissima, fraudolenta, galaxiae, hasleana, multiseries, multistriata, pseudodelicatissima, pungens, seriata, subfraudolenta, subpacifica, abrensis, bipertita batesiana, fukuyoi, granii, lundholmiae, kodamae, obtusa, plurisecta, simulans, subcurvata, turgidula, punctionis
		Nitzschia	N. bizertensis, N. navis-varingica

Lipophilic Toxins	Diarrhetic Shellfish Poisoning (DSP) Acido Okadaico (OA)	Dinophysis	acuminata, acuta, caudata, fortii, ovum, sacculus, tripos, infundibulum (PTX2) , norvegica, miles
	Dinophysistossine (DTXs)	Phalacroma	mitra, rotundatum
		Prorocentrum	concavum (sin. P.faustiae), cassubicum, leve, lima, hoffmannianum (sin. P. maculosum), texanum, mexicanum/rhathymum, caipirignum, foraminosum, P. cf. fukuyoi
		Coolia	C. malayensis
	Yessotossine (YTXs)	Lingulaulax	L. polyedra
		Protoceratium	P. reticulatum
		Gonyaulax	montressoriae, spinifera, taylorii bohaiensis
		Coolia	malayensis, canariensis, palmyrensis, tropicalis
	Azaspiracid Shellfish Poisoning (AZP) Azaspiracidi (AZAs)	Azadinium	poporum, spinosum, dexteroporum,
		Amphidoma	A. languida
		Coolia	C. malayensis

Identificazione a livello di genere *Pseudo-nitzschia* spp.:

- Transapical axes ca. 3 μm or more: <u>seriata complex</u>
- Transapical axes ca. 3 μm or less: <u>delicatissima complex</u>


THE 18™ INTERNATIONAL CONFERENCE
ON HARMFUL ALGAE

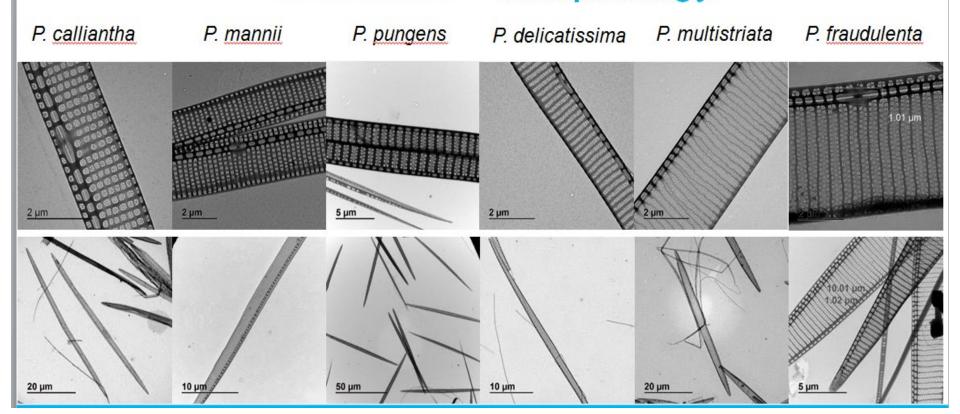
EDAN ECASVETENS TA SACIA-ECASVETENS

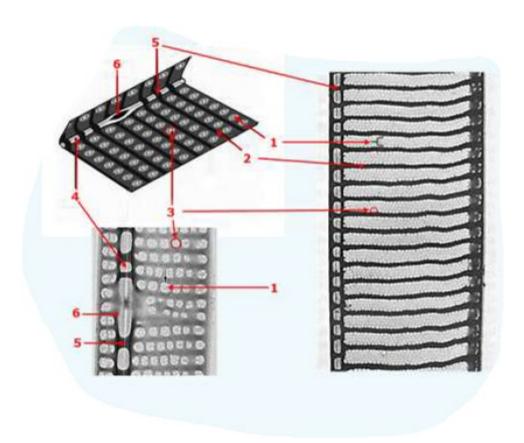
Pseudo-nitzschia in the Northern Adriatic

Dominant species in N. Adriatic • (Liubešić et al. 2011)

Decline in abundance of phytoplankton, possibly due to oligotrophication (Mozetič et al. 2010; Cabrini et al. 2012), but rise of PN abundance (Marič 2013)

Present species; P.
calliantha, P. mannii, P.
pungens, P. fraudulenta, P.
delicatissima, P.
pseudodelicitissima, P.
subfraudulenta; P. galaxiae;
P. multistriata (Cabrini et al.
2012, Ljubešič et al. 2011);
Cabrini; Marič; Baričević, this
conference)





RESULTS - Morphology

- 1. Striae
- 2. Interstriae
- 3. Poroidi
- 4. Fessura del rafe
- 5. Fibula
- **6.** Central interspace

DSP toxin producers (OA, DTXs, PTXs)

Dinophysis fortii

D. sacculus

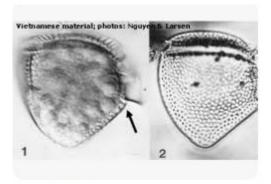
D. acuminata

D. caudata

D. sacculus/acuminata group



D. tripos



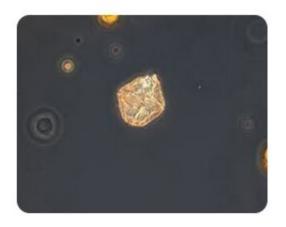
DSP toxin producers (OA, DTXs, PTXs)

Phalacroma rotundatum

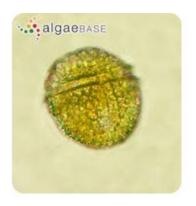
• WoRMS

Phalacroma mitra

Prorocentrum lima (specie bentonica)



Prorocentrum rhathymum/mexicanum (specie bentonica)


YTXs e suoi analoghi

cisti

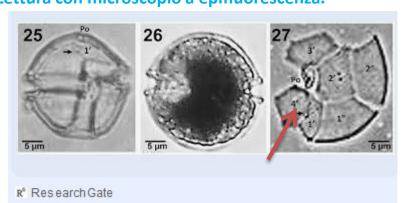
Lingulodinium polyedra ora Lingulaulax polyedra

Protoceratium reticulatum

Gonyaulax spinifera...o Gonyaulax montresoriae

Huang, S., Mertens, K.N., Derrien, A., David, O., Shin, H.S., Li, Z., Cao, X.Y., Cabrini, M., Klisarova, D. & Gu, H.-F. (2024). Gonyaulax montresoriae sp. nov. (Dinophyceae) from the Adriatic Sea produces predominantly yessotoxin. Harmful Algae 141(102761): 1–12

PSP toxins producers (STX group)



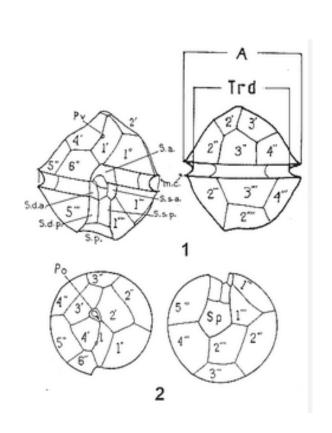
Alexandrium minutum

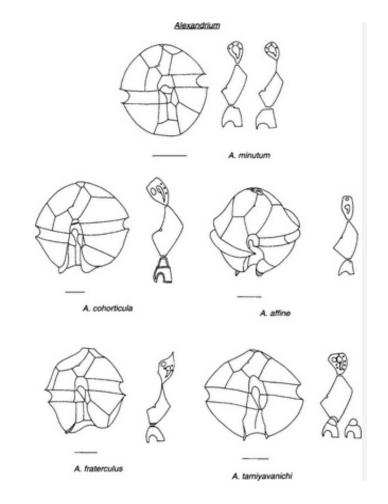
Arpa FVG

Alexandrium taylorii

Colorazione con <u>Calcofluor (Fritz e Triemer, 1985)</u>: fluorocromo non specifico, si lega alla cellulosa delle placche. Lettura con microscopio a epifluorescenza.

Tecnica dello squashing

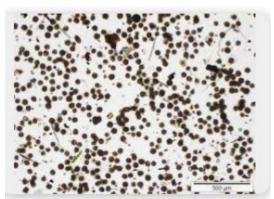

Research Gate CAP.21 «Fitoplancton: metodiche di analisi quali-quantitativa», Zingone et al.


Identificazione a livello di genere: Alexandrium spp.

Genere *Alexandrium* ...per arrivare alla specie...

SEM (Scanning Electron Microscopy)

- essicazione all'aria o con Critical Point Dryer
- montaggio su supporto e copertura con oro


Fotografie da Internet

Manuali e Linee Guida ISPRA 56/2010 «Metodologie di studio del Plancton marino». Capitolo 23, Honsell et al.

Da che materiale partire per approfondire l'analisi microscopica: fioriture o colture

«fioriture» o (harmful) algal blooms

istema Nazionale

dell'Ambiente

per la Protezione

Colture algali:

- isolamento da fioritura naturale;
- acquisto di ceppi algali certificati;
- terreni di coltura specifici;
- incubatore con temperatura e illuminazione (ore luce/ore buio) programmabili.

Qualità del dato

Prova Accreditata secondo la UNI EN 15204:2006

Qualità dell'Acqua. Norma guida per la conta di fitoplancton utilizzando la microscopia inversa (Tecnica di Utermöhl)

Gli <u>operatori</u> devono essere <u>qualificati</u> per la prova e la qualifica deve essere mantenuta nel tempo secondo quanto previsto dal sistema qualità.

Il <u>metodo</u> deve essere <u>controllato</u> nel tempo con <u>controlli qualità interni</u> <u>ed esterni</u> secondo la tempistica prevista «dall'analisi del rischio» e dal conseguente «piano per il controllo della qualità analitica».

Le attività di analisi devono essere tracciabili.

Quaderno di laboratorio 1 Norma di riferimento UNI EN 15204

Campione NRC: Data prelievo: July July July July July July July July	Camp. non integrato: Sup. O; Med./Fondo O Camp. già fissato all'arrivo: O Sì - O No Fissativo utilizzato in campo:	O Balneazione Fioritura/CP/AC O Bianco POS 088 Molluschicoltura O Controllo Interno O Controllo Esterno:	Data e ora <u>sedimentazione</u> ://	Firma Operatore: Firma Operatore:
Vol. sedim.: O 25ml - Oml Volume base camera: 2,5 ml	N° camera sedim.: Microscopio: O 1401 - O 2436 - O 3346	Ingrand. utilizzati: O 1 O 200X - O 250X - 1000X		Campione condizionato: O Sì - O No

Quaderno di laboratorio 2

Таха	Alexandrium	Dinophysis	Gonyaulax	Lingulodin.	Protocer.	O. ovata	Phalacroma	Pror. lima/	Karenia	Pseudo-	Altri taxa							
	spp.	acuminata	acuta	caudata	fortii	sacculus	tripos		totali	spinifera	polyedra	reticulatum	/ O. spp.	spp./rot./mitra	Pror. spp.	papil./spp.	nitzs. spp.	pot. tox.
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		
Campo																		<u> </u>
1°Transetto 2°Transetto																		<u> </u>
3°Transetto																		<u> </u>
4°Transetto																		<u> </u>
1/2 Camera																		<u> </u>
Camera tot.																		
Cell. /Litro																		
Cell. / Litro																		

Diatomee	Dinoflag. tot.	Alexand. spp.	Dinophysis tot.	G. spinifera	L. polyedra	P. reticulatum			Pr. lima / spp.	K .papilio./spp.		Altri taxa p.tox.
totali	cell./L	cell./L	cell./L	cell./L	cell./L	cell./L	spp.	mit	cell./L	cell./L	spp.	cell./L
cell./L		Cell./ L		Celi./ L	Cell./ L	Cell./ L	cell./L	cell./L	Cell./ L	Cell./ L	cell./L	Cell./ L
LI	LI	LI	LI	LI	LI	LI			LI	LI		LI
	LS	1.0	LS	1.0	1.6	1.6	Ц	LI	1.6	1.0	LI	1.0
LS		LS		LS	LS	LS	LS	LS	LS	LS	LS	LS

CONTA FITOPLANCTON

DEL FRIULI VENEZIA GIULIA											
NRC											
Stazione / Sito di campionamento											
Data prelievo			scopio AP140	01-TS	Micro	scopio AP243	6-TS	Mi			
Operatore											
Volume sedimentato in litri = v (0,01 - 0,025 - 0,050 - 1 - 2)	0,025										
Ingrandimento utilizzato per il conteggio	100	200	400	125	250	400					
Numero campi conteggiati = c											
Numero campi conteggiati nel conteggio su transetti		0,00	0,00	0,00	0,00	0,00	0,00				
Numero campi su mezza camera		86,22	344,00	1373,40	95,43	395,03	1018,76				
Numero campi su camera intera		172,43	688,00	2746,80	190,86	790,07	2037,52				
Numero campi per transetto		16,73	33,41	66,76	17,60	35,81	57,50				
Area camera di sedimentazione (μm²) = A	530.660.000	530.660.000	530,660,000	530.660.000	530.660.000	530.660.000	5				
Area campo (μm²) = a	3.077.514	771.308	193,192	2.780.410	671.666	260.444					
Area transetto (µm2) = diametro campo all'ingrandimento uti											
diametro camera.		51.480.000	25.772.240	12.898.080	48.932.000	24.050.000	14.976.000				
Numero transetti conteggiati:											
Fattore Diluizione = d (tq = 1; 1:2 = 2; 1:4 = 4; 1:10 = 10;)											
Livello di significatività (α)	0,05										
Limite di rivelabilità $\pi_{ m det} = -\ln(~lpha~) \cdot f_{\it total}~/(V~\cdot f_{\it com})$	nted)	*DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Num. tot. di cellule contato per un determ. taxon (campi o tr	ansetti o	Risultato N =	X * (A * d) / (a	'v) - dove "	X"è la media d	el n. di cell. p	er campo (x/c)	1			
camera intera) = x								_			
Diatomee totali (cellule/litro)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Lim. inf.	0	-61110	*DIV/0!	*DIV/0!	*DIV/0!	#DIV/0!	#DIV/0!				
Lim. sup.	0	-Divio	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Dinoflagellati totali (cellule/litro)		#DIV/0!	*DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Lim. inf.	0	-61110	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Lim. sup.	0	*DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Alexandrium son Inelluleillitral	. "	#DIANUi∏	#DIV/0!	#DIANUi	#DIV/N!	#UIV/N!	#UIV/N!				

Parametri di validazione e controlli interni

- Limite di rilevabilità: è pari a 3 cellule per vetrino e quindi a 120 cell/l per un volume sedimentato di 25 ml, di un campione tal quale, effettuando il conteggio su tutta la camera.
- Precisione: scelta a priori e pari al 5% → per conteggio mezza camera, a transetti o a campi casuali ci si può fermare arrivati a 400 cellule per vetrino.
 Nei nostri campioni le specie potenzialmente tossiche sono sempre ampiamente inferiori a 400 cell/vetrino e quindi il conteggio viene effettuato su tutta la camera.
- Incertezza (stima della): viene espressa come limiti di confidenza inferiore e superiore.

Parametri di validazione e Controlli interni

- Ripetibilità tra aliquote e tra operatori: test di omogeneità multinomiale con χ^2 calcolato secondo il metodo di Mosimann.

Il test raggiunge le migliori prestazioni se <u>si contano almeno 200 alghe</u> per campione.

Nel nostro caso ci fermiamo a livello di Classe: Diatomee e Dinoflagellati.

Si calcola inoltre il valore di ripetibilità da confrontare con il limite di ripetibilità ottenuto in sede di validazione:

ripetibilità tra due valori ≤ limite di ripetibilità calcolato

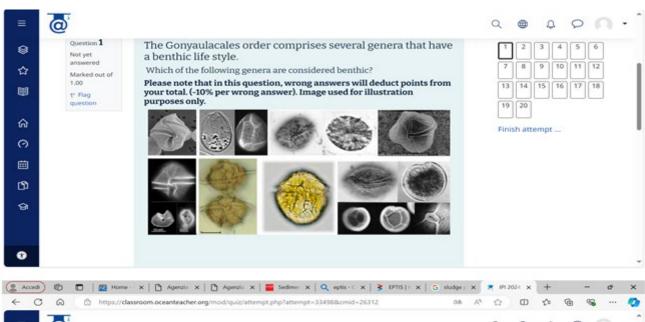
ARPA FRIULI VENEZIA GIULIA	TEST N	IULTINO	MIALE PRO	OVA II	N DOPI	SIO	FC32/LTS - Ed.1 rev.0 - 31/08/2015		
Campo / Transetto / Camera	Unità di misura	Diatomee	Dinoflagellati	Totale	n*p _{1 diat.}	n*p _{2 dinofl.}	χ2 pai	ziale Mosimann	
Prova 1	cellule			0	#DIV/0!	#DIV/0!		#DIV/0!	
Prova 2	cellule			0	#DIV/0!	#DIV/0!		#DIV/0!	
Totale	cellule	0	0	0					
Media (μ)	cellule	#DIV/0!	#DIV/0!	0,00					
Numero Campi/Transetti/Camere		2	2						
Verifica Teorema Limite Centrale n	μ>30	#DIV/0!	#DIV/0!						
χ^2 (somma(n _i -μ) ²)/μ		#DIV/0!	#DIV/0!						
χ ² tab. (1 GdL) P>0,05		3,841	3,841						
Campione omogeneo		#DIV/0!	#DIV/0!						
χ ² Mosimann	#D	IV/0!							
χ ² tab. (1 GdL) P>0,05	3,8	341							
Test Multinomiale superato	#D	Inse	rire i valori	nelle celle in	giallo				

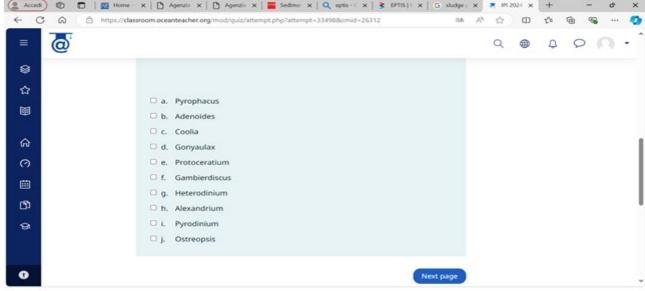
ARPA FRIULI VENEZIA GIULIA	Т	TEST MULTINOMIALE 3 OPERATORI										
Operatori	Unità di misura	Diatomee	Dinoflagellati	Totale	n*p _{1 diat.}	n*p _{2 dinofl.}	χ2 parziale Mosimann					
	cellule/			0	#DIV/0!	#DIV/0!	#DIV/0!					
	cellule/			0	#DIV/0!	#DIV/0!	#DIV/0!					
	cellule/			0	#DIV/0!	#DIV/0!	#DIV/0!					
Totale	cellule/	0	0	0								
Media	cellule/	#DIV/0!	#DIV/0!	0,00								
χ²	#DIV/	0!	#DIV/0!									
χ ² (2 GdL) P>0,05	5,99	1	5,991									
Campione omogeneo	#DIV/	0!	#DIV/0!									
χ ² Mosimann		#DIV/0!										
χ ² tab. (2 GdL) P>0,05		5,991										
Test Multinomiale superato		#DIV/0!		Inserire	i valori nelle ce							

Intergovernmental Oceanographic Commission

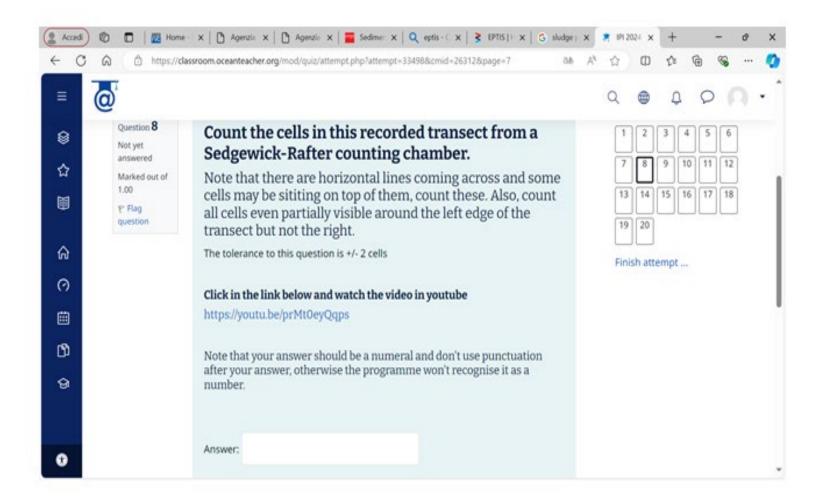
IPI Phytoplankton Proficiency Test 2024 Instructions

Figure 1: Sample set per participant including sealed vials, lugol's iodine, plastic droppers and 50ml sterilin tubes.





IPI-2024-OCHABS Phytople	ankton Ir	ntercom	oarison	Exer	cise				
Analyst Name: Analyst Code :									
Settlement date:									
Volume Chamber (ml) Analysis date:									
Sample No:	145	387	545						
Organism	Cell count	Cell count	Cell count	Multiplication factor		Number cells/L	Number cells/L	Number cells/L	Average
	₩								#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
									#DIV/0!
Comments:	•			•					



- Fine prima parte -

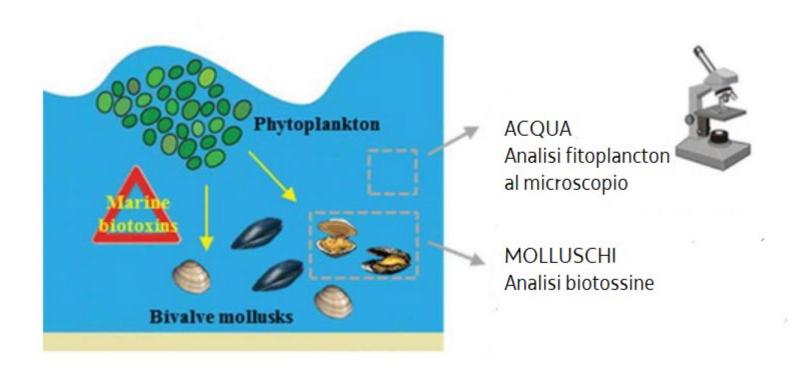
GRAZIE per l'ATTENZIONE

SOS Laboratorio per lo studio degli ecosistemi acquatici

«Fitoplancton potenzialmente tossico nelle acque destinate alla molluschicoltura»

Seconda parte

Trieste, 27 maggio 2025



Seconda parte relatrice Chiara Suraci (responsabile SOS):

- principali sindromi e tossine implicate;
- classificazione delle acque per la molluschicoltura;
- normativa e gestione del dato (early warning);
- fitoplancton e dati ambientali;
- tecniche analitiche molecolari.

Mattarozzi, M., Cavazza, A., Calfapietra, A., Cangini, M., Pigozzi, S., Bianchi, F., & Careri, M. (2019). Analytical screening of marine algal toxins for seafood safety assessment in a protected Mediterranean shallow water environment. *Food Additives & Contaminants: Part A*, 36(4), 612–624. https://doi.org/10.1080/19440049.2019.1581380

Perché vengono prodotte le biotossine?

Non è ancora chiaro il possibile ruolo di queste molecole nel metabolismo delle alghe, ma si ipotizza un loro intervento nel mantenimento dell'equilibrio fisiologico dell'organismo: alcune tossine sono importanti nella sintesi di acidi nucleici, altre nella sintesi della parete cellulare.

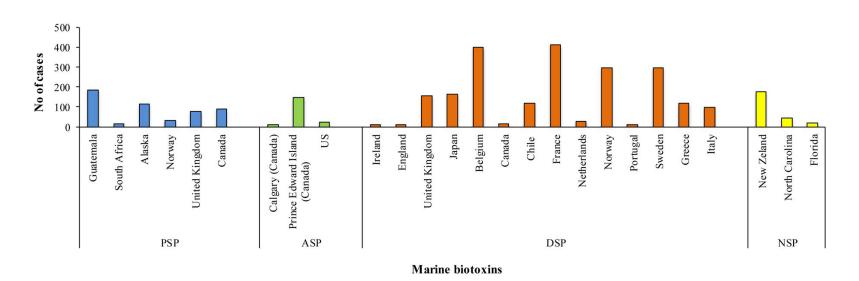
Nei paesi industrializzati, i programmi di controllo degli allevamenti di molluschi permettono un sostanziale contenimento di questo rischio, vietando la commercializzazione di questi organismi quando vengono raggiunte concentrazioni inaccettabili di tossine nei tessuti dei molluschi.

(Il rischio sanitario associato alle tossine di alghe marine Paola ADE (a), Enzo FUNARI (a) e Roberto POLETTI Ann Ist Super Sanità 2003;39(1):53-68)

Quali tipi di biotossine sono disciplinate dalla normativa europea?

REGOLAMENTO (CE) N. 853/2004

CAPITOLO V: NORME SANITARIE PER I MOLLUSCHI BIVALVI VIVI


.

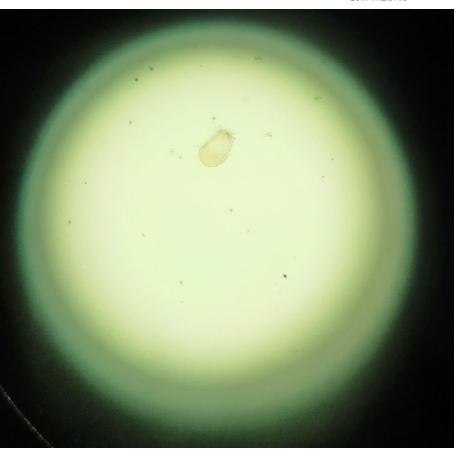
- 2. Essi non devono contenere biotossine marine in quantità totali (misurate nel corpo intero o nelle parti consumabili separatamente) superiori ai seguenti limiti:
- a) PSP ("Paralytic Shellfish Poison"): 800 μg/kg;
- a) ASP ("Amnesic Shellfish Poison"): 20 mg/kg di acido domoico;
- c) acido okadaico, dinophysitossine e pectenotossine complessivamente: 160 µg di equivalente acido okadaico/kg;
- d) yessotossine: 1 mg di equivalente yessotossine/kg;
- e) azaspiracidi: 160 µg di equivalente azaspiracido/kg.

(**DSP** "Diarrhetic Shellfish Poison")

Outbreaks (number of cases) of poisoning due to marine biotoxins occurred from 1970 through 2010.

Visciano P, Schirone M, Berti M, Milandri A, Tofalo R, Suzzi G (2016) Marine biotoxins: occurrence, toxicity, regulatoryl imits and reference methods. Front Microbiol7:1051

Le tossine PSP sono rappresentate dalla saxitossina e dai suoi 21 analoghi. Sono composti idrosolubili, resistenti al calore. Le tossine PSP agiscono sui canali del sodio, bloccando il trasporto di questi ioni attraverso la membrana. In questo modo possono bloccare la trasmissione dell'impulso nervoso nei nervi periferici e nei muscoli scheletrici.


Il rischio sanitario associato alle tossine di alghe marine Paola ADE (a), Enzo FUNARI (a) e Roberto POLETTI Ann Ist Super Sanità 2003;39(1):53-68

Le tossine DSP sono polieteri ciclici, composti liposolubili, in particolare acido okadaico e suoi derivati.

L'alterazione dei processi di secrezione del sodio dalla cellula, causata da queste molecole, porta all'effetto diarroico.

Il rischio sanitario associato alle tossine di alghe marine Paola ADE (a), Enzo FUNARI (a) e Roberto POLETTI Ann Ist Super Sanità 2003;39(1):53-68

Le tossine **ASP** sono rappresentate dall'acido domoico, amminoacido neurotossico. un Oltre disturbi di tipo gastrointestinale, questa intossicazione può provocare in alcuni casi confusione e perdita di memoria, da cui il termine amnesic shellfish poisoning (ASP) proposto per questa sindrome.

Il rischio sanitario associato alle tossine di alghe marine Paola ADE (a), Enzo FUNARI (a) e Roberto POLETTI Ann Ist Super Sanità 2003;39(1):53-68

Normativa di riferimento europea

Regolamento di esecuzione(UE) 2019/627

che stabilisce <u>modalità pratiche uniformi per l'esecuzione dei controlli ufficiali</u> sui prodotti di origine animale destinati al consumo umano in conformità al regolamento (UE) 2017/625 del Parlamento europeo e del Consiglio e che modifica il regolamento (CE) n.2074/2005 della Commissione per quanto riguarda i controlli ufficiali

Normativa di riferimento europea

Regolamento UE 2019/627

<u>Titolo V</u> prescrizioni specifiche in materia di controlli ufficiali relativi ai molluschi bivalvi vivi provenienti da zone classificate di produzione e stabulazione:

Art.52 **Classificazione** delle zone di produzione e stabulazione di MBV (in funzione del livello di contaminazione fecale)

Art.59 Monitoraggio delle zone classificate di produzione e stabulazione – lettera c): le AC periodicamente devono verificare...la presenza di plancton tossico nella acque di produzione e stabulazione e di biotossine marine nei MBV

Art.61 <u>Piani di campionamento</u>...che siano rappresentativi della zona classificata - punto 3... per rilevare la presenza di plancton tossico, eventuali cambiamenti nella composizione e la relativa distribuzione geografica nelle acque delle zone classificate

Articolo 61

Normativa di riferimento europea

Regolamento UE 2019/627

Art.61 <u>Piani di</u> campionamento

Piani di campionamento

- 1. Ai fini dei controlli di cui all'articolo 59, lettere b), c) e d), le autorità competenti elaborano piani di campionamento che prevedono lo svolgimento di tali controlli ad intervalli regolari, o caso per caso se i periodi di raccolta sono irregolari. La distribuzione geografica dei punti di campionamento e la frequenza del campionamento garantiscono che i risultati delle analisi siano rappresentativi della zona classificata di produzione e di stabulazione in questione.
- I piani di campionamento per il controllo della qualità microbiologica dei molluschi bivalvi vivi tengono conto in particolare:
- a) delle probabili variazioni della contaminazione fecale;
- b) dei parametri di cui all'articolo 56, paragrafo 1.
- I piani di campionamento per rilevare la presenza di plancton tossico nelle acque delle zone classificate di produzione e di stabulazione e di biotossine marine nei molluschi bivalvi vivi tengono conto in particolare delle possibili variazioni della presenza di plancton contenente biotossine marine. Il campionamento comprende quanto segue:
- a) il campionamento periodico volto a individuare eventuali cambiamenti nella composizione del plancton contenente tossine e nella relativa distribuzione geografica. Qualora i risultati ottenuti facciano sospettare un accumulo di tossine nella polpa dei molluschi bivalvi vivi, si procede a un campionamento intensivo;
- b) prove periodiche di tossicità sui molluschi bivalvi vivi più sensibili alla contaminazione provenienti dalla zona in questione.
- Nei periodi di raccolta la frequenza del campionamento ai fini dell'analisi delle tossine nei molluschi bivalvi vivi ha cadenza settimanale: tuttavia:
- a) tale frequenza può essere ridotta in determinate zone classificate di stabulazione o di produzione o per determinati tipi di molluschi bivalvi vivi se la valutazione del rischio relativa alla presenza di tossine o fitoplancton indica un rischio molto basso di episodi tossici;
- b) tale frequenza è aumentata se tale valutazione indica che il prelievo di campioni settimanale sarebbe insufficiente.
- La valutazione del rischio di cui al paragrafo 4 è oggetto di revisione periodica al fine di valutare il rischio di presenza di tossine nei molluschi bivalvi vivi provenienti dalle zone in questione.
- 6. Se sono noti i tassi di accumulazione delle tossine di un gruppo di specie che vivono nella stessa zona classificata di produzione o di stabulazione, la specie con il tasso più elevato può essere utilizzata in qualità di indicatore. Ciò rende possibile lo sfruttamento di tutte le specie del gruppo se i livelli di tossine della specie che fa da indicatore sono inferiori ai limiti prescritti. Se i livelli di tossine della specie che fa da indicatore sono superiori ai limiti prescritti, la raccolta delle altre specie è permessa unicamente se ulteriori analisi sulle altre specie mostrano che i loro livelli di tossine sono inferiori ai limiti.
- 7. Per quanto riguarda il monitoraggio del plancton, i campioni sono rappresentativi della colonna d'acqua nella zona classificata di produzione o di stabulazione e forniscono informazioni sulla presenza di specie tossiche e sulle tendenze in atto all'interno della popolazione. Qualora siano rilevati cambiamenti nelle popolazioni tossiche che possono portare a un accumulo di tossine, la frequenza del campionamento dei molluschi bivalvi vivi è aumentata oppure è stabilita la chiusura precauzionale delle zone interessate finché non siano ottenuti i risultati dell'analisi delle tossine.
- I piani di campionamento per il controllo della presenza di contaminanti chimici consentono di rilevare qualsiasi superamento dei livelli stabiliti nel regolamento (CE) n. 1881/2006.

Campionamento periodico fitoplancton Aumento frequenza se necessario

Eventuale variazione frequenza in base alla valutazione del rischio

Colonna d'acqua Chiusura precauzionale

Articolo 63

Normativa di riferimento europea

Regolamento UE 2019/627

Art.63 <u>Riapertura</u> <u>delle zone di</u> <u>produzione</u>

Riapertura delle zone di produzione

- Le autorità competenti possono riaprire una zona di produzione o di stabulazione chiusa unicamente se le norme sanitarie per i molluschi bivalvi vivi risultano nuovamente conformi alle pertinenti prescrizioni di cui all'allegato III, sezione VII, capitolo V, del regolamento (CE) n. 853/2004 e non presentano altri rischi per la salute umana.
- 2. Qualora abbiano chiuso una zona di produzione o di stabulazione per via della presenza di plancton o di livelli di tossine nei molluschi bivalvi vivi superiori al limite prescritto per le biotossine marine di cui all'allegato III, sezione VII, capitolo V, punto 2, del regolamento (CE) n. 853/2004, le autorità competenti possono riaprire tale zona unicamente se almeno due risultati di analisi consecutivi, separati da un intervallo di almeno di 48 ore, sono inferiori al limite prescritto.
- Nel decidere se riaprire una zona di produzione o di stabulazione, le autorità competenti possono tenere conto di informazioni sulle tendenze concernenti il fitoplancton.
- 4. Qualora vi siano dati attendibili relativi alla dinamica della tossicità di una data zona, e purché siano disponibili dati recenti indicanti una tendenza decrescente della tossicità stessa, le autorità competenti possono decidere di riaprire una zona in presenza di risultati inferiori ai limiti prescritti all'allegato III, sezione VII, capitolo V, punto 2, del regolamento (CE) n. 853/2004 ottenuti con un solo campionamento.

Valutazione anche in base alla tendenza della crescita della popolazione fitoplanctonica

Normativa di riferimento Regione FVG

DGR 16/12/2022 n.1925

Linee guida per l'applicazione del Regolamento (UE) 2017/625 e del Regolamento CE 853/2004 nel settore dei molluschi bivalvi nelle zone di produzione, di raccolta e di stabulazione dell'arco costiero del Friuli Venezia Giulia. Riclassificazione triennale delle zone.

Art 5. : confermare protocollo d'intesa tra l'Autorità regionale, l'Autorità locale competente per i controlli ufficiali veterinari, l'Istituto Zooprofilattico Sperimentale delle Venezie, l'Agenzia Regionale per la Protezione dell'Ambiente del Friuli Venezia Giulia e gli operatori del settore

Normativa di riferimento Regione FVG

DGR 16/12/2022 n.1925

Linee guida per l'applicazione del Regolamento (UE) 2017/625 e del Regolamento CE 853/2004 nel settore dei molluschi bivalvi nelle zone di produzione, di raccolta e di stabulazione dell'arco costiero del Friuli Venezia Giulia. Riclassificazione triennale delle zone.

Art. 6 e 7 : stabilisce, sulla base dei dati ottenuti con il monitoraggio sanitario e ambientale, la classificazione delle zone di cui al punto 1 venga aggiornata almeno con frequenza triennale; ai fini dell'aggiornamento della classificazione delle aree destinate alla molluschicoltura, le Aziende Sanitarie formulano la loro proposta di alla Direzione centrale Salute, Politiche sociali e Disabilità sulla base delle evidenze presentate dall'indagine sanitaria condotta dalla task force per la sanitary survey dei MBV, integrato dal parere dell'Agenzia Regionale per la Protezione dell'ambiente responsabile dei risultati del monitoraggio ambientale delle acque nonché dei risultati ottenuti attraverso l'applicazione di modelli numerici previsionali e dell'Istituto Zooprofilattico Sperimentale delle Venezie responsabile dei risultati analitici sui molluschi bivalvi vivi.

DGR 05/08/2022 n.1159 – Protocollo d'intesa

- è finalizzato al miglioramento della sicurezza alimentare
- è sottoscritto da:
- Regione FVG Direzione centrale salute, politiche sociali, disabilità-Servizio di prevenzione, sicurezza alimentare, sanità pubblica veterinaria;
- Regione FVG Direzione centrale risorse agroalimentari, forestali e ittiche-Servizio caccia e risorse ittiche;
- ASUGI e ASUFC;
- Istituto Zooprofilattico Sperimentale delle Venezia;
- Agenzia regionale per la protezione dell'ambiente-ARPA FVG;
- Associazione temporanea di scopo-ATS, Operatori del settore alimentare-OSA, Centro tematico informativo-CTI

DGR 05/08/2022 n.1159 – Protocollo d'intesa

ARPA FVG: Laboratorio ufficiale per la valutazione della qualità ambientale delle acque marino – costiere e di transizione e per l'analisi del fitoplancton potenzialmente tossico

Descrive le modalità operative di allevamento e pesca in mare e in laguna, in particolare in relazione a:

Campionamento

Fermi volontari/per allerta/per mancanza di prodotto

Autocontrolli

Comunicazioni tra enti

Punti specifici di campionamento

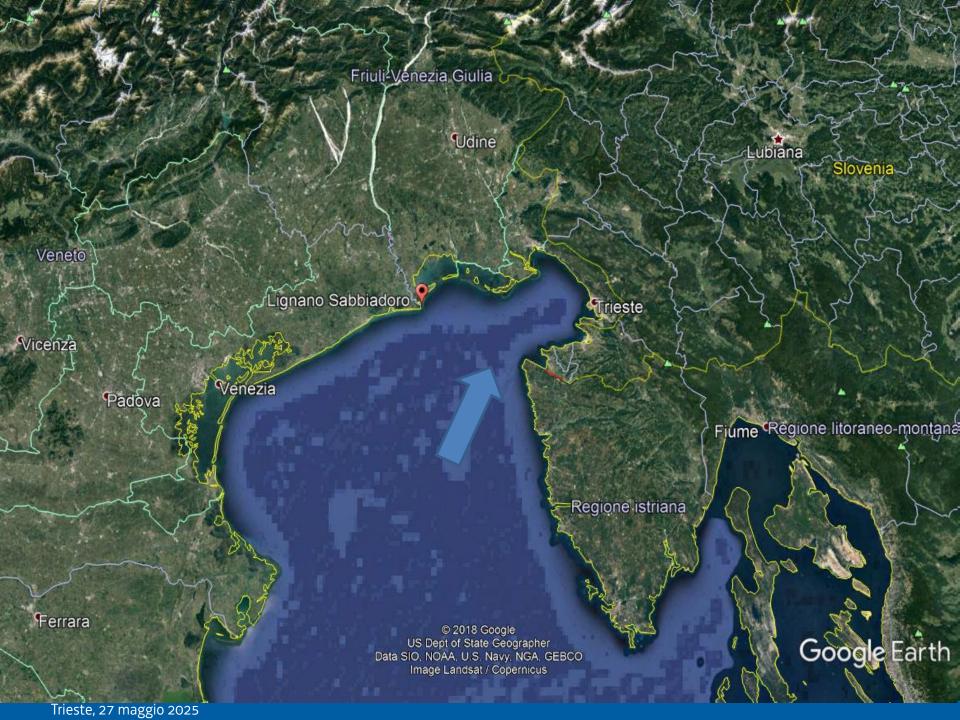
DGR 05/08/2022 n.1159 – Protocollo d'intesa

I piani di campionamento per i MBV e le acque devono essere eseguiti ad intervalli regolari, o caso per caso, se i periodi di raccolta sono irregolari.

I punti di campionamento devono essere georeferenziati le frequenze e le modalità di campionamento devono garantire che le analisi siano rappresentative della zona considerata

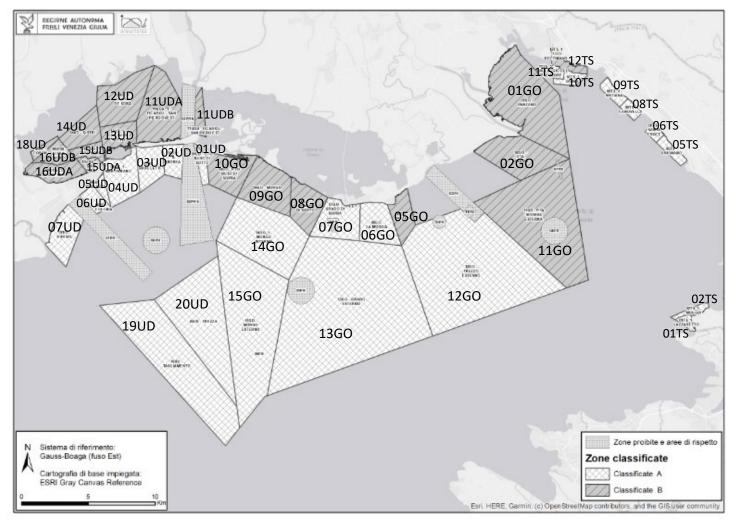
Individuazione delle specie da campionare: per gli allevamenti Mytilus galloprovincialis (mare) e Tapes philippinarum (laguna), per i banchi naturali in mare la «specie indicatore» individuate in base al loro potere filtrante: Mytilus galloprovincialis o Venus verrucosa (substrati duri), Chamalea gallina o Ensis minor(substrati molli), Callista chione, per la laguna Tapes philippinarum, Cerastoderma glaucum o Crassostea gigas

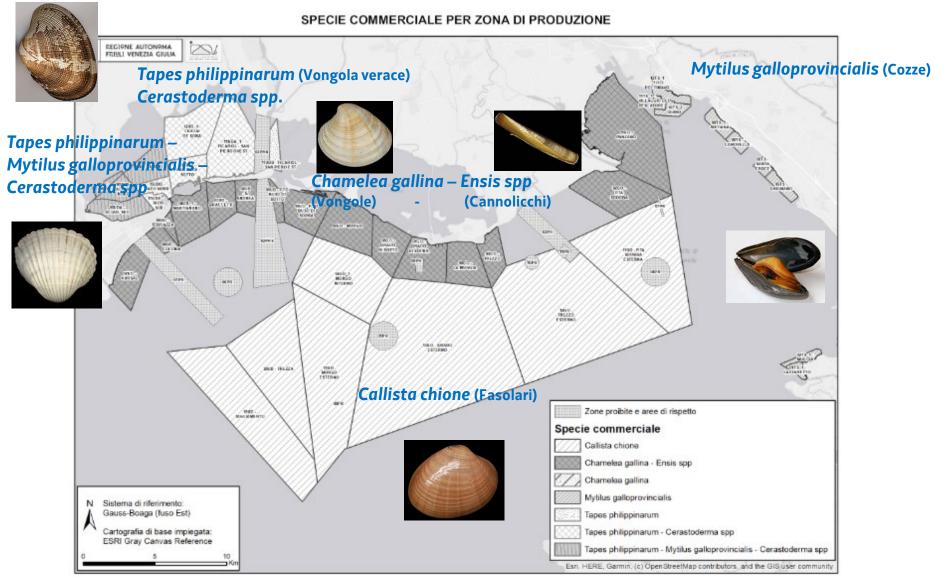
Il campione di MBV è contestuale al campione di acqua per la ricerca di plancton potenzialmente tossico



DGR 05/08/2022 n.1159 – Protocollo d'intesa

CORDINAMENTO TRA I SOTTOSCRITTORI DEL PROTOCOLLO D'INTESA:


- pianificazione controlli (bimestrale);
- gestione campionamenti molluschi e acqua AC;
- gestione campionamenti molluschi e acqua OSA;
- comunicazione;
- approfondimenti conoscitivi di carattere ambientale in caso situazioni sfavorevoli ripetute.


Deliberazione della Giunta regionale 16 dicembre 2022, n. 1925 Linee guida per l'applicazione del Reg (UE) 2017/625 e del Reg (CE) 853/2004 nel settore dei molluschi bivalvi nelle zone di produzione, raccolta e stabulazione dell'arco costiero del Friuli Venezia Giulia. Riclassificazione triennale delle zone

SEZIONE IX

CLASSIFICAZIONE ZONE DI PRODUZIONE

Deliberazione della Giunta regionale 16 dicembre 2022, n. 1925 Linee guida per l'applicazione del Reg (UE) 2017/625 e del Reg (CE) 853/2004 nel settore dei molluschi bivalvi nelle zone di produzione, raccolta e stabulazione dell'arco costiero del Friuli Venezia Giulia. Riclassificazione triennale delle zone

Trieste, 27 maggio 2025

Attività e comunicazioni relative all'early warning (EW)

L'attività di **EW** nasce in FVG su richiesta di OSA e Servizio Veterinario nell'ambito di una **collaborazione coordinata dal CTI** (Centro Tecnico Informativo) già nel **2018**. La sua importanza risulta anche dalle **Linee Guida Europee** del <u>2021</u> («Monitoring of Toxin-producing Phytoplankton in Bivalve Mollusc Harvesting Areas - Guide to Good Practice: Technical Application», EU-RL-MB).

Attività e comunicazioni relative all'early warning (EW)

E' da ricordare però che:

- i valori di allerta per i principali taxa fitoplanctonici potenzialmente tossici sono validi solo a livello locale;
- devono essere revisionati periodicamente perché la presenza/abbondanza delle specie, la loro distribuzione geografica e la loro eventuale produzione di tossicità potrebbe variare nel tempo.

Attività e comunicazioni relative all'early warning (EW)

Il superamento dei valori di allerta viene comunicato tempestivamente (pec/mail) da ARPA e le autorità competenti possono così richiedere un'intensificazione del monitoraggio del fitoplancton e/o un incremento delle analisi in autocontrollo sui molluschi da parte degli OSA

Analisi del rischio e valori guida per EW

situazione di EW quando RF (PxRxC) ≥ 8

- RF = rischio finale;
- P = pericolosità della specie, tratta dalla letteratura;
- R = rischio, ovvero la probabilità che la contaminazione dei molluschi o una fioritura potenzialmente pericolosa si verifichi a livello locale (dati storici/esperienza);
- C = concentrazione della specie algale, cioè quale concentrazione è sufficiente a rendere il prodotto PxRxC ≥ 8 (anche questo valore ricavato da dati storici/esperienza) e quindi a determinare l'EW.

arpa FVG Analisi del rischio e valori guida per EW $RF(PxRxC) \ge 8$

P = Pericolo

Livello 1 = taxon poco pericoloso o pericoloso solo per la fauna ittica ed il benthos in caso di fioritura (P=1)

Livello 2 = taxon potenzialmente pericoloso (P=2)

Livello 3 = taxon potenzialmente pericoloso anche a basse concentrazioni (P=3)

R = Rischio

Livello 1 = probabilità che l'evento (contaminazione molluschi/fioritura) si verifichi, bassa (R=1)

Livello 2 = probabilità che l'evento si verifichi, media (R=2)

Livello 3 = probabilità che l'evento si verifichi in almeno un periodo dell'anno, alta (R=3)

C = Concentrazioni specie algali (associate a R) cell/l

Livello $1 = 40 \le x < 120 (C=1)$

Livello $2 = 120 \le x < 400/500 (C=2)$

Livello $3 = 400/500 \le x < 10000 (C=3)$

Livello $4 = 10000 \le X < 100000 (C=4)$

Livello $5 = \ge 100000$ / fioriture (C=5)

Taxon	Tossina	(P)	(R)	(C)	RF
Alexandrium taylorii	PSP (low)	1	2	4	8
Genere Alexandrium	PSP	2	2	3	12
Genere Azadinium	DSP - AZA	2	1	4	8
Dinophysis fortii	AO - DSP	3	3	1	9
Generi <i>Dinophysis</i> e <i>Phalacroma</i>	DSP	2	2	3	12
Prorocentrum lima e P. mexicanum/rhathymum	AO - DSP	3	1	3	9
Lingulodinium polyedra	YTX	2	2	3	12
Gonyaulax spinifera	YTX	2	2	3	12
Protoceratium reticulatum	YTX	3	2	3	12
Karenia brevis	NSP	3	1	3	9
Genere <i>Pseudo-nitzschia</i>	ASP	2	1	5	10

Linee guida europee

Table 5.1. Concentration of toxin-producing species of phytoplankton used as warning and closure threshold in several EU countries. The species reported are indicative and the list must be periodically updated (in accord to IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae: http://www.marinespecies.org/hab/). Note that not all the listed species have already been found in European waters, however they should be included, in view of the increasingly frequent spread of non-indigenous species

	toxin-producing plankton (Reg. EC 853/2004)			Wa	rning thresho (cells/L)	old		
		POR	GRE	FRA	UK	CRO	NL	DK
PSP	Gymnodinium catenatum Pyrodinium bahamense	500	500	None	Not monitored		500	Not monitored
	Alexandrium spp. (A.minutum, A.ostenfeldii, A.andersoni, A.australiense, A.catenella, A.minutum, A.pacificum, A.tamiyavanichii, A.taylorii)	500	500	10000 (all species together) 1000-5000 for lagoons	40		500	500
	Marine cyanobacteria (e.g Anabaena, Aphanizomenon, Plankthotrix, Lyngbya, Cilindrospermopsis)	10000000		None			10000000	Not monitored
	Pseudo- nitzschia spp. Seriata group (> 3 μm wide)	80000	50000	100000	Scotland: 50000 England, Wales, N Ireland: 150000		80000	200000
ASP	Pseudo- nitzschia spp. Delicatissima group (< 3 μm wide)	200000	_	300000			200000	200000
	Nitzschia bizertensis Nitzschia navis-varingica							Not monitored

(contd.)

Linee guida europee

(Table 1 contd.)

	toxin-producing plankton (Reg. EC 853/2004)		Warning threshold (cells/L)								
		POR	GRE	FRA	UK	CRO	NL	DK			
DSP	Dinophysis spp. (D.acuta, D.acuminata, D.fortii, D.ovum, D.caudata, D.infundibulum, D.miles, D.norvegica, D.sacculus, D.tripos) Phalacroma spp. (P.mitra, P.rotundatum)	200	200	100	100	9900 cells m ⁻²	200	1000			
	Prorocentrum spp. except P. cordatum (P.lima, P.belizeanum, P.concavum, P. caipirignum, P.foraminosum, P.faustiae, P.hoffmannianum, P. mexicanum/rhathymum)	500	200	10000	100		500	500			
AZP	Azadinium spp. (A.poporum, A.spinosum, A.dexteroporum, A.luciferelloides) Amphidoma languida	50000	1000	None			50000	Not monitored			
YTXs	Gonyaulax spinifera Gonyaulax taylorii Lingulodinium polyedra Protoceratium reticulatum	1000	200	10000	None set. Monitored		1000	Not monitored			

(contd.)

	toxin-producing plankton (Reg. EC 853/2004)	С	losure thresh (cells/L)	old
		POR	GRE	NOR
	Gymnodinium catenatum Pyrodinium bahamense	1000-2000	>1000	Not monitored
PSP	Alexandrium spp. (A.minutum, A.ostenfeldii, A.andersoni, A.australiense, A.catenella, A.minutum, A.pacificum, A.tamiyavanichii, A.taylorii)	1000-2000	>1000	200
	Marine cyanobacteria (e.g Anabaena, Aphanizomenon, Plankthotrix, Lyngbya, Cilindrospermopsis)	>20000000		Not monitored
	Pseudo- nitzschia spp. Seriata group (> 3 μm wide)	100000 - 200000	>200000	50000
ASP	Pseudo- nitzschia spp. Delicatissima group (< 3 μm wide)	300000 - 500000		1000000
	Nitzschia bizertensis Nitzschia navis-varingica			Not monitored
DSP	Dinophysis spp. (D.acuta, D.acuminata, D.fortii, D.ovum, D.caudata, D.infundibulum, D.miles, D.norvegica, D.sacculus, D.tripos) Phalacroma spp. (P.mitra, P.rotundatum)	500 - 1000	>1000	100-200 (D. acuta) 1000 (D. acuminata) 4000 (D. norvegica)
	Prorocentrum spp. except P. cordatum (P.lima, P.belizeanum, P.concavum, P. caipirignum, P.foraminosum, P.faustiae, P.hoffmannianum, P. mexicanum/rhathymum)	2000-3000 P. minimum 1x10 ⁶	>1000	Not monitored
AZP	Azadinium spp. (A.poporum, A.spinosum, A.dexteroporum, A.luciferelloides) Amphidoma languida	>100000	5000	Not established
YTXs	Gonyaulax spinifera Gonyaulax taylorii Lingulodinium polyedra Protoceratium reticulatum	100000	>1000	1000

Linee guida europee

Valori soglia per EW nelle mitilicolture (Golfo di Trieste)

Tossine	Fitoplancton produttore di tossine	Limite di Early Warning (cellule/L)
PSP	Alexandrium spp.	≥ 500
	Gymnodinium catenatum	≥ 500
AZP	Azadinium spp.	≥ 10.000
DSP	Dinophysis fortii	≥ 40
	Dinophysis totali	≥ 300
	Phalacroma rotundatum + Phalacroma mitra (somma o singola specie)	≥ 500
	Prorocentrum lima + P. mexicanum-rhathymum (somma o singola specie)	≥ 500
YTXs	G. spinifera + L. polyedra + P. reticulatum (somma o singola specie)	≥ 500
NSP	Karenia papilionacea	≥ 1000
ASP	Pseudo-nitzschia spp.	≥ 500.000

Valori soglia per EW per altri allevamenti / banchi naturali

Tossine	Fitoplancton produttore di tossine	Limite di Early Warning
		(cellule/L)
PSP	Alexandrium spp.	≥ 500
	Gymnodinium catenatum	≥ 500
AZP	Azadinium spp.	≥ 10.000
DSP	Dinophysis fortii	≥ 120
	Dinophysis totali	≥ 500
	Phalacroma rotundatum + Phalacroma mitra	≥ 500
	(somma o singola specie)	
	Prorocentrum lima + P. mexicanum-rhathymum	≥ 500
	(somma o singola specie)	
YTXs	G. spinifera + L. polyedra + P. reticulatum	≥ 500
	(somma o singola specie)	
NSP	Karenia papilionacea	≥ 1000
ASP	Pseudo-nitzschia spp.	≥ 500.000

Early warning 2019 - 2024

	2019	2020	2021	2022	2023	2024
Early Warning	23	34	20	25	8	21
Alexandrium spp	1	2	4	9	1	0
Dinophysis totali	7	10	2	1	0	2
Dinophysis fortii	66	115	31	44	11	36
Gonyaulax spinifera	2	0	0	0	0	0
Lingulodinium polyedra	1	0	0	0	0	0
Pseudo-nitzschia spp	0	0	2	0	0	0

Early warning 2023

MESE	DATA	PUNTO	PROVINCIA
gennaio	16/01/2023	NRC 442/2023 – punto 06TS Dinophysis fortii presente, 40 cell./L	TS
febbraio	20/02/2023	NRC 2051/2023 – punto 05TS Dinophysis fortii presente, 40 cell./L	TS
maggio	29/05/2023	NRC 8586/2023 - punto UD 01 : Alexandrium spp 800 cell/l	UD
maggio	29/05/2023	NRC 8588/2023 - punto UD 02 : Alexandrium spp 600 cell/l	UD
settembre	05/09/2023	NRC 14714/2023 – punto 01TS Dinophysis fortii presente, 80 cell./L	TS
settembre	05/09/2023	NRC 14716/2023 – punto 02TS Dinophysis fortii presente, 40 cell./L	TS
settembre	11/09/2023	NRC 15033/2023 — punto 09TS Dinophysis fortii 200 cell./L	TS
settembre	18/09/2023	NRC 15568/2023 – punto 06TS Dinophysis fortii presente, 80 cell./L	TS
settembre	18/09/2023	NRC 15569/2023 – punto 08TS Dinophysis fortii presente, 40 cell./L	TS
settembre	25/09/2023	NRC 16093/2023 – punto 01TS Dinophysis fortii presente, 40 cell./L	TS
settembre	25/09/2023	NRC 16096/2023 – punto 11TS Dinophysis fortii presente, 40 cell./L	TS
ottobre	02/10/2023	NRC 16508/2023 – punto 08TS Dinophysis fortii presente, 40 cell./L	TS
ottobre	02/10/2023	NRC 16509/2023 — punto 10TS Dinophysis fortii presente, 80 cell./L	TS



Early warning 2024

MESE	DATA	PUNTO	PROVINCIA
gennaio	02/01/2024	NRC 00034/24 – punto 11TS Dinophysis fortii presente, 40 cell./L	TS
febbraio	26/02/2024	NRC 03080/24 – punto 09TS Dinophysis fortii presente, 40 cell./L	TS
marzo	04/03/2024	NRC 03359/24 – punto 08TS Dinophysis fortii presente, 40 cell./L	TS
marzo	04/03/2024	NRC 03360/24 – punto 10TS Dinophysis fortii presente, 40 cell./L	TS
marzo	11/03/2024	NRC 03966/24 – punto 09TS Dinophysis fortii presente, 40 cell./L	TS
marzo	11/03/2024	NRC 03967/24 – punto 11TS Dinophysis fortii 160 cell./L	TS
marzo	18/03/2024	NRC 04508/24 – punto 20UD Dinophysis fortii 480 cell./L, Dinophysis totali 520 cell./L	UD
marzo	18/03/2024	NRC 04390/24 – punto 08TS Dinophysis fortii presente, 40 cell./L	TS
marzo	18/03/2024	NRC 04392/24 – punto 12TS Dinophysis fortii presente, 40 cell./L	TS
marzo	18/03/2024	NRC 04577/24 – punto 13GO Dinophysis fortii 240 cell./L	GO
marzo	18/03/2024	NRC 04592/24 – punto 15GO Dinophysis fortii 280 cell./L	GO
marzo	25/03/2024	NRC 05113/24 – punto 15GO Dinophysis fortii 160 cell./L	GO
aprile	02/04/2024	NRC 05131/24 – punto 08TS Dinophysis fortii 240 cell./L	TS
aprile	02/04/2024	NRC 05132/24 – punto 10TS Dinophysis fortii presente, 80 cell./L	TS
aprile	08/04/2024	NRC 05323/24 – punto 15GO Dinophysis fortii 160 cell./L	GO
aprile	08/04/2024	NRC 05498/24 – punto 11TS Dinophysis fortii presente, 40 cell./L	TS
aprile	15/04/2024	NRC 06088/24 – punto 08TS Dinophysis fortii presente, 40 cell./L	TS
aprile	15/04/2024	NRC 06089/24 – punto 10TS Dinophysis fortii 240 cell./L	TS
aprile	22/04/2024	NRC 06710/24 – punto 09TS Dinophysis fortii presente, 40 cell./L	TS
aprile	22/04/2024	NRC 06711/24 – punto 11TS Dinophysis fortii presente, 40 cell./L	TS
maggio	06/05/2024	NRC 07237/24 – punto 09TS Dinophysis fortii presente, 80 cell./L	TS
maggio	06/05/2024	NRC 07238/24 – punto 11TS Dinophysis fortii presente, 40 cell./L	TS
maggio	20/05/2024	NRC 08237/24 – punto 11TS Dinophysis fortii presente, 40 cell./L	TS
giugno	03/06/2024	NRC 09059/24 – punto 01TS Dinophysis fortii presente, 40 cell./L	TS
giugno	03/06/2024	NRC 09061/24 – punto 09TS Dinophysis fortii presente, 40 cell./L	TS
giugno	11/06/2024	NRC 09619/24 – punto 08TS Dinophysis fortii presente, 40 cell./L	TS
giugno	11/06/2024	NRC 09920/24 – punto 10TS Dinophysis fortii presente, 80 cell./L	TS
giugno	25/06/2024	NRC 10711/24 – punto 06TS Dinophysis fortii 120 cell./L	TS
giugno	25/06/2024	NRC 10712/24 – punto 08TS Dinophysis fortii presente, 40 cell./L	TS
giugno	25/06/2024	NRC 10713/24 – punto 10TS Dinophysis fortii presente, 40 cell./L	TS
luglio	22/07/2024	NRC 12447/24 – punto 08TS Dinophysis fortii 120 cell./L	TS
luglio	22/07/2024	NRC 12446/24 – punto 10TS Dinophysis totali 400 cell./L, di cui Dinophysis fortii 320 cell./L	TS
agosto		NRC 13399/24 – punto 19UD Dinophysis fortii 120 cell./L	UD
settembre	03/09/2024	NRC 14761/24 – punto 10TS Dinophysis fortii presente, 40 cell./L	TS
settembre	30/09/2024	NRC 16425/24 – punto 06TS Dinophysis fortii presente, 80 cell./L	TS
novembre		NRC 20605/24 – punto 02TS Dinophysis fortii presente, 40 cell./L	TS

anno	stagione	durata evento tox per AO	presenza di Dinophysis fortii e conc. max. (cell/l)	presenza di Dinophysis ovum e conc. max. (cell/l)
2019	estate - autunno	dal 09/09 al 14/10	dal 20/08 al 17/12; 720	
2020	inverno - primavera	dal 27/01 al 06/04	dal 07/01 al 15/04; 200	
	estate - autunno	dal 27/07 al 19/10	dal 14/07 al 16/11; 1360	
2021	inverno - primavera	dal 01/03 al 19/04	solo il 01/03; 80	dal15/02 al 19/04; 760
	estate - autunno	dal 30/08 al 26/10	dal 24/08 al 13/12; 440	
2022	inverno - primavera	21-mar	dal 14/02 al 07/03; 40	
(+ p.ti GO presenza Dinophyysis e AO in autosorveglianza)	estate - autunno	dal 12/09 al 14/11	dal 05/09 al 28/11; 1080	
2023	inverno - primavera	27-mar	/	13 e 20/03; 40
	estate - autunno	nessun evento tossico	dal 05/09 al 02/10; 200	
2024 (+ presenza Dinophysis p.ti UD e GO)	inverno - primavera	dal 26-feb al 29-apr; 17-giu	dal 26/2 al 25/6; 240	dal 29/1 al 18/3; 240
	estate - autunno	23-set	03/09; 40	

 Quali parametri ambientali possono influenzare la crescita di specie algali potenzialmente tossiche in ambiente marino?

 Quali effetti può indurre il cambiamento climatico sulla popolazione fitoplanctonica, e quindi sulla presenza di biotossine?

Article

Toxic Phytoplankton in Mussel Farms in the Gulf of Trieste, Adriatic Sea (Italy): A Preliminary Analysis of Long-Term Data (2001–2022) in Relation to Environmental Conditions

Lisa Tondelli, Nicola Bettoso, Oriana Blasutto, Massimo Celio and Alessandro Acquavita *

....Correlazioni significative suggeriscono che le precipitazioni influenzino i livelli di nutrienti e la proliferazione del fitoplancton tossico.

Agenzia Regionale per la Protezione dell'Ambiente (ARPA FVG), Via Cairoli 14, 33057 Palmanova, Italy; lisa.tondelli@arpa.fvg.it (L.T.); nicola.bettoso@arpa.fvg.it (N.B.); oriana.blasutto@arpa.fvg.it (O.B.); massimo.celio@arpa.fvg.it (M.C.)

Abstract: The present study utilised a comprehensive, long-term dataset of toxic phytoplankton (2001-2022) to analyse the relationships between the abundance, distribution, and seasonal trends of toxic phytoplankton, as well as the influence of various sampling methods, physico-chemical parameters, nutrients, and meteo-climatic parameters. The data were obtained through institutional monitoring at four selected sites dedicated to shellfish farming in the Gulf of Trieste (Adriatic Sea, Italy). The results show significant gradients in the spatial distribution of toxic phytoplankton and clear seasonal patterns in regard to the physico-chemical parameters and nutrients. Toxic phytoplankton abundance peaked in late winter/early spring and early autumn, depending on the genus considered. Significant correlations suggest that rainfall influences the nutrient levels and the proliferation of toxic phytoplankton. The time series analysis highlighted significant increases in temperature, salinity, and nitrogen species, during the study period, and decreases in silicon and phosphorous, while chlorophyll a and the overall phytoplankton abundance remained relatively stable, except for a significant decrease in Lingulodinium from 2015 to 2022. This preliminary assessment provides a valuable basis for further approaches (e.g., continuous in situ measurements, modelling, machine learning) to investigate the potential impact of climate variability on toxic phytoplankton dynamics in the Gulf of Trieste and to support mussel-farming management from both health and environmental perspectives.

Keywords: toxic phytoplankton; nutrients; physico-chemical parameters; temporal series; Gulf of Trieste; Adriatic Sea

Correspondence: alessandro.acquavita@arpa.fvg.it

Parametri meteo-climatici da Report mensili a cura dell'OSMER ARPA FVG e parametri chimico-fisici da sonda SOC Stato dell'Ambiente

<u>Dati meteo-climatici</u> (campionamento giornaliero, report mensile):

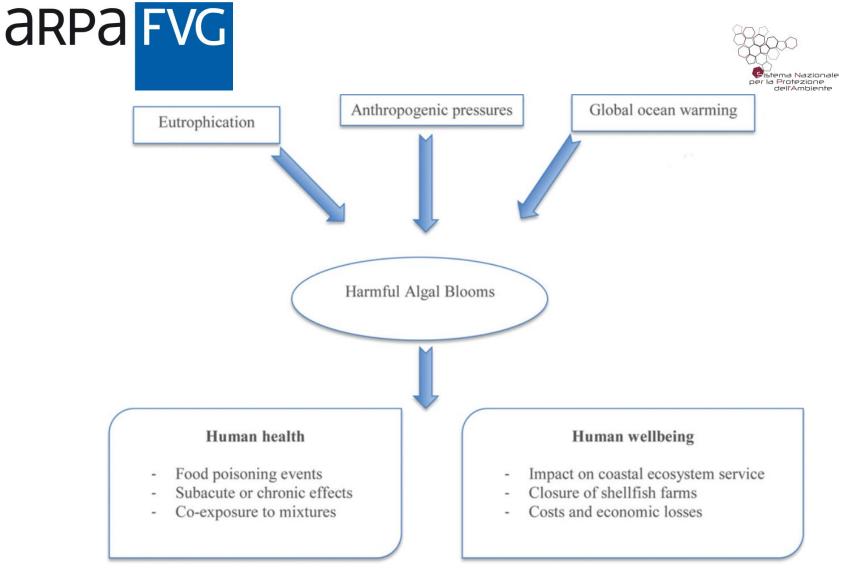
- T°C media giornaliera dell'acqua di mare in una stazione al molo Fratelli Bandiera, Trieste a -2m di profondità;
- Piovosità media nei 7 gg precedenti al campionamento;
- Radiazione media giornaliera;
- Vento medio giornaliero e vento massimo giornaliero.

<u>Dati sonda</u> (campionamento mensile):

- T°C media colonna (dalla superficie ad un massimo di -12m) di una/due stazioni prossime alle mitilicolture del Golfo di Trieste per ogni zona (Muggia, Costiera, Baia di Panzano);
- pH
- Chla
- Salinità
- Ossigeno disciolto
- torbidità

Tabella riassuntiva correlazioni significative (p≤0,05)

	SOC Stato - dati sonda						IZsVe	OSMER - dati metereologici				
zona Baia di Panza	no 2019-2024											
	T°C mare	salinità	рН	Chla	O2 disciolto	torbidità	AO	T°C mare	P (7gg)	R	V max	V medio
D. ovum							0,2	-0,1				
D.fortii					-0,3		0,3		0,1			
altre Dinophysis			0,4		-0,3		0,2					
Phalacroma sp.					-0,2					-0,2		
				SOC Sta	to		IZsVe		C	SMER		
zona Costiera 2019	9-2024											
	T°C mare	salinità	рН	Chla	O2 disciolto	torbidità	AO	T°C mare	P (7gg)	R	V max	V medio
D. ovum								-0,1				
D.fortii	0,3				-0,4	0,3	0,3	0,1				
altre Dinophysis	0,3		0,3		-0,3		0,1	0,2		0,1		
Phalacroma sp.					-0,3		0,2					
				SOC Sta	to		IZsVe		C	SMER		
zona Muggia 2019	-2024											
	T°C mare	salinità	рН	Chla	O2 disciolto	torbidità	AO	T°C mare	P (7gg)	R	V max	V medio
D. ovum												
D.fortii	0,3				-0,3		0,2					
altre Dinophysis	0,4				-0,3		0,5	0,2		0,2		
Phalacroma sp.	0,3				-0,3		0,2	0,1				



Fioritura *Gonyaluax fragilis* estate 2024

Past 4.03 – Analisi univariata di correlazione

The harmful algal blooms have become more prevalent owing to climate change (globalwarming), eutrophication and anthropogenic pressures.

ViscianoP,SchironeM,BertiM,MilandriA,TofaloR,SuzziG(2016)Marinebiotoxins:occurrence,toxicity,regulatorylimitsandreferencemethods.FrontMicrobiol7:1051

Impact of Climate Change on Emergence of Biotoxin in Fish and Shellfish

January 2023

PankajKishore, V.A. Minimol, AnujKumar, C.O. Mohan, Devananda Uchoi, Niladri Sekhar Chatterjee, and Satyen Kumar Panda

DOI:<u>10.1007/978-981-19-5500-6_14</u>

•In book: Outlook of Climate Change and Fish Nutrition (pp.179-194)

Le **zone costiere**, in cui spesso si concentrano allevamenti e/o zone di libera raccolta, sono **maggiormente influenzate** dalle attività antropiche e dalle variazioni di temperatura rispetto alle zone di mare aperto.

Il cambiamento climatico dovuto al riscaldamento globale e a diverse attività antropiche ha portato a una maggiore incidenza di HAB nelle acque marine. I principali cambiamenti climatici includono l'aumento della temperatura dell'acqua marina, lo stress ipossico, la diminuzione del pH, che ostacolano le principali funzioni biologiche dell'ecosistema.

Il riscaldamento globale inoltre aumenta la **stratificazione** e riduce la miscelazione dei nutrienti tra acque superficiali e profonde.

L'effetto della **temperatura** sulla crescita e sulla produzione di tossine degli HAB è scarso e non esiste ancora una relazione definita.

Temperature più calde promuovono la crescita di alcuni HAB, come Dinopysis spp., responsabili di una maggiore concentrazione di DSP.

Questo è l'inverso per Alexandrium spp., che cresce meno a temperature più calde.

È stato riportato che un'elevata concentrazione di **anidride carbonica** favorisce la crescita e la produzione di tossine in Alexandrium spp., Karlodinium venefecum e P. mulli, in cui sono state segnalate anche differenze indipendenti dalla specie e dal ceppo tra queste specie.

Analogamente, un **pH** elevato ha un effetto di incremento della crescita degli HAB; tuttavia, un tasso di crescita e una produzione di tossine più elevati sono stati notati in condizioni di alta CO2 e basso pH, suggerendo che l'eccesso di carbonio potrebbe essere la ragione dell'aumento del tasso di crescita e della produzione di tossine negli HAB.

I principali impatti del cambiamento climatico comprendono variazioni nella distribuzione delle specie e cambiamenti nei loro habitat, funzioni fisiologiche, metaboliche e riproduttive, insieme al conseguente stress per adattarsi alle mutate condizioni ambientali.

Gli **ecosistemi acquatici** potrebbero essere i più colpiti a causa degli intensi cambiamenti climatici.

Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H.

Does climate change increase the risk of marine toxins? Insights from changing seawater conditions.

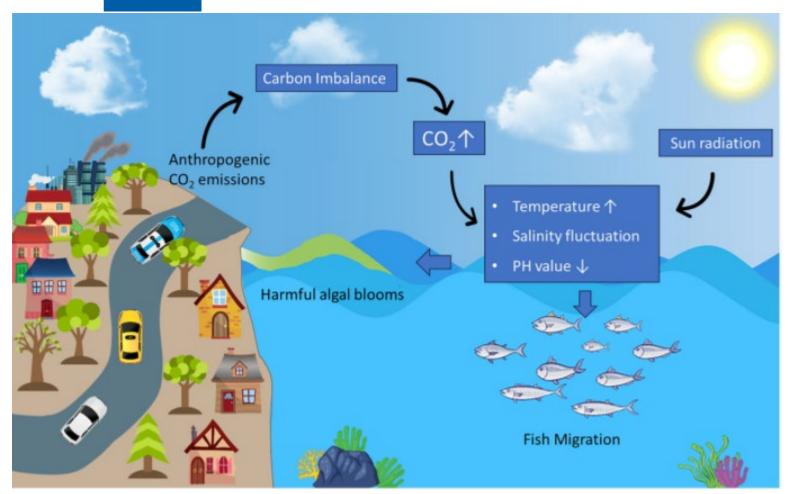
Arch Toxicol. 2024 Sep;98(9):2743-2762. doi: 10.1007/s00204-024-03784-5. Epub 2024 May 25. PMID: 38795135.

Recentemente, si è verificata una comparsa di tossine marine in regioni precedentemente non colpite e si ritiene che il cambiamento climatico possa essere un fattore significativo.

Il cambiamento climatico può causare:

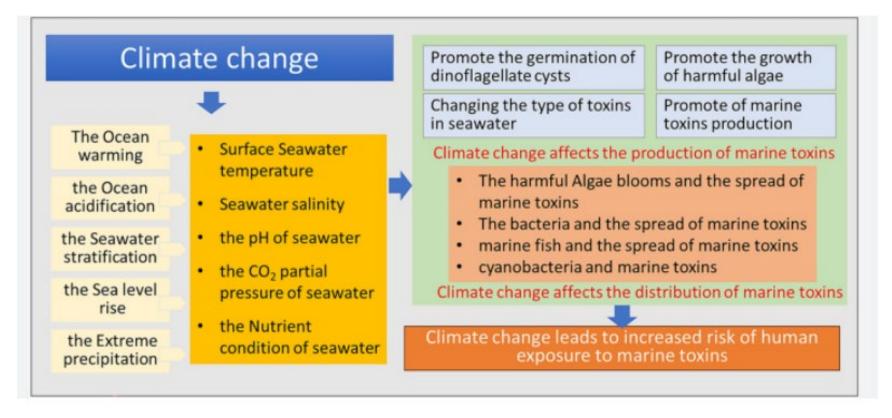
- il riscaldamento degli oceani,
- l'acidificazione,
- la stratificazione e
- l'innalzamento del livello del mare.

Questi eventi climatici possono alterare

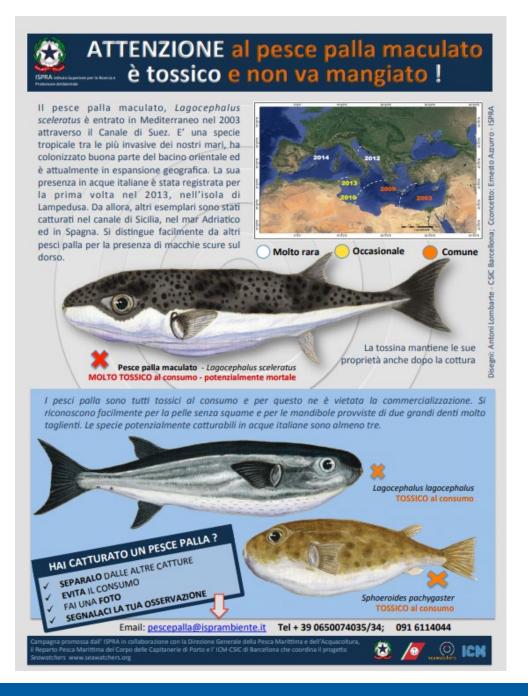

- la temperatura superficiale,
- la salinità,
- il pH e
- le condizioni nutritive dell'acqua di mare,

il che può favorire la crescita di varie alghe e batteri, facilitando la produzione di tossine marine.

Quindi il cambiamento climatico può ampliare l'area di distribuzione di vita degli organismi marini (come alghe, batteri e pesci), incrementando così la produzione e la diffusione di tossine marine.



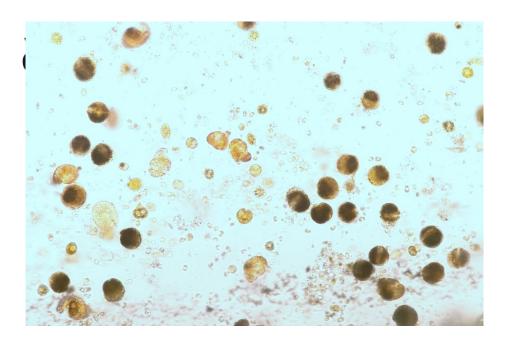
Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol. 2024 Sep;98(9):2743-2762. doi: 10.1007/s00204-024-03784-5. Epub 2024 May 25.



Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol. 2024 Sep;98(9):2743-2762. doi: 10.1007/s00204-024-03784-5. Epub 2024 May 25.

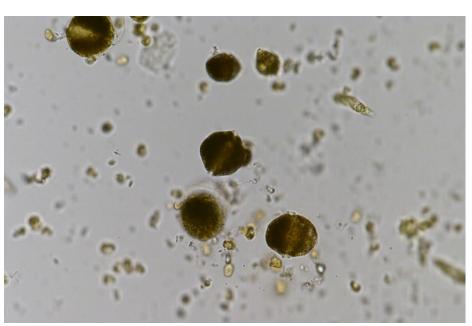
arpa **FVG**

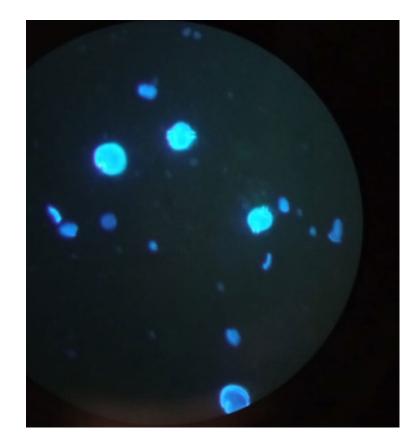
Identificazione di specie algali mediante RT – PCR


Per l'allestimento del metodo è stato seguito quanto riportato da:

Per la parte analitica:

MICROSCOPIC AND MOLECULAR METHODS FOR QUANTITATIVE PHYTOPLANKTON ANALYSIS 2010 Chapter 13: Quantitative PCR for detection and enumeration of phytoplankton Luca Galluzzi and Antonella Penna - Intergovernmental Oceanographic Commission - Manuals and Guides 55


Per il riferimento dei primers:


Monitoring of HAB species in the Mediterranean Sea through molecular methods ANTONELLA PENNA et al. - Journal of Plankton Research, Volume 29, Issue 1, 1 January 2007

Fioritura *Alexandrium* taylorii luglio – agosto 2022

Fioritura *Alexandrium* taylorii luglio – agosto 2022

Concentrazione del campione tramite filtrazione su membrane

Estrazione del DNA con kit di estrazione

Verifica e quantificazione del DNA estratto con spettrofotometro

Preparazione della mix di reazione (primers, nucleotidi, Taq polymerase, MgCl2; SYBR green per la rilevazione del DNA) e preparazione del piatto di reazione con l'aggiunta del DNA estratto

Reazione di amplificazione tramite termociclatore opportunamente impostato: Protocollo termico e Protocollo di piatto

Concentrazione del campione tramite filtrazione su membrana

Cellule algali concentrate per filtrazione e/o centrifugazione

Lisi cellulare e precipitazione

Gistema Nazionale per la Protezione dell'Ambiente

Fasi analitiche:

Estrazione del DNA con kit di estrazione

Verifica e quantificazione del DNA estratto con spettrofotometro

Preparazione della mix di reazione (primers, nucleotidi, Taq polymerase, MgCl2; SYBR green per la rilevazione del DNA);

preparazione del piatto di reazione con l'aggiunta del DNA estratto

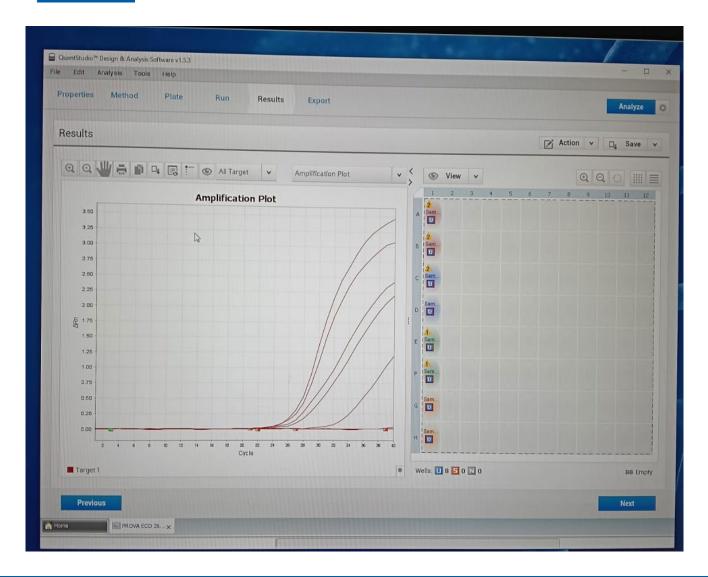
Table III: Oligonucleotide primers targeting the ITS-5.8S rDNA regions of different Harmful Algal Bloom genera and species designed in this study

Target taxa	Forward primer name	Reverse primer name	Forward primer sequence (5'-3') \rightarrow Reverse primer sequence (5'-3') \leftarrow	Amplification size (bp)	G + C %	Primer locations
Alexandrium spp.*	5.8S-5 [']	5.8S-3'	F'-GCAADGAATGTCTTAGCTCAA	135	38.0	5.8S (5'→3')
			R'-GCAMACCTTCAAGMATATCCC		42.8	5.8S (3'←5')
Dinophysis spp.	ITS1-dinoF	5.8S-dinoR	F'-GCACGCATCCAAYTATCCATAAC;	360	45.5	ITS1 (5'→3')
			R'-CATACAGACACCAACGCAGG		55.0	5.8S (3'←5')
Pseudo-nitzschia spp.	Pseudo 5'	Pseudo 3'	F'-CGATACGTAATGCGAATTGCAA	111	40.9	5.8S (5'→3')
			R'-GTGGGATCCRCAGACACTCAGA		45.5	5.8S (3'←5')
Ostreopsis spp.	Ostreopsis F	Ostreopsis R	F'-AAAACGATATGAAGAGTGCAGC	92	40.9	5.8S (5'→3')
			R'-CCAGGAGTATGCCTACATTCAA		45.5	5.8\$ (3'←5')
Alexandrium andersoni	5.8S-'5	ITS2an	F'-GCAADGAATGTCTTAGCTCAA	244	38.0	5.8S (5'→3')
			R'-GATGACACGTTTCGGCAAG		52.6	ITS2 (3'←5')
Alexandrium catenella	ITS1c	5.8S-3'	F'-AGCATGATTTGTTTTCAAGC	226	33.3	ITS1 (5'→3')
			R'-GCAMACCTTCAAGMATATCCC		42.8	5.8\$ (3'←5')
Alexandrium minutum*	ITS1m	5.8S-3'	F'-CATGCTGCTGTTGATGACC	212	52.3	ITS1 (5'→3')
			R'-GCAMACCTTCAAGMATATCCC		42.8	5.8S (3'←5')
Alexandrium tamarense	5.8S-5'	ITS2t	F'-TGTTACTTGTACCTTTGGGA	134	40.0	5.8S (5'→3')
			R'-ACAACACCCAGGTTCAAT		44.4	ITS2 (3'←5')
Alexandrium taylori	ITS1t	5.8\$-3'	F'-TGGTGTTTGAATGCGGTTGT	297	45.0	ITS1 (5'→3')
			R'-GCAMACCTTCAAGMATATCCC		42.8	5.8S (3'←5')
Fibrocapsa japonica	Fibrocapsa F	Fibrocapsa R	F'-GCAGAGTCCAGCGAGTCATCA	180	57.1	5.8S (5'→3')
			R'-TAATATCCCAGACCACGCCAGA		50.0	ITS2 (3'←5')
Coolia monotis	Coolia F	Coolia R	F'-ATAAGTTCAACATGTGATGA	121	30.0	5.8S (5'→3')
			R'-CATATCTTCAAGCATATCC		36.8	5.8\$ (3'←5')
Lingulodinium polyedrum	L.Poly GF	L.Poly GR	F'-ATGTGTTCTCATCGGATGTTG	383	45.5	ITS1 (5'→3')
			R'-CACAGTACCGCTGCCACTTAAA		50.0	ITS2 (3'←5')
Protoceratium reticulatum	P.ret F	P.ret. R	F'-TGCTGATTGCCATCTATCTT	382	40.0	ITS1 (5'→3')
			R'-CAGAAGCGCGTTAAACAG		50.0	ITS2 (3'←5')
Ostreopsis ovata	Ovata F	Ostreopsis R	F'-CAATGCTCATGTCAATGATG	210	40.0	ITS1 (5'→3')
			R'-CCAGGAGTATGCCTACATTCAA		45.5	5.8S (3'←5')
O. cf. siamensis	Siamensis F	Ostreopsis R	F'-TGTTACCATTGCTGAGTTTG	223	40.0	ITS1 (5'→3')
			R'-CCAGGAGTATGCCTACATTCAA		45.4	5.8S (3'←5')

Degenerate code D, A/G/T; M, A/C; Y, C/T; R, A/G.


Monitoring of HAB species in the Mediterranean Sea through molecular methods ANTONELLA PENNA et al. - Journal of Plankton Research, Volume 29, Issue 1, 1 January 2007

Elstema Nazionale per la Protezione dell'Ambiente


Fasi analitiche:

Reazione di amplificazione tramite termociclatore opportunamente impostato

Work in progress:

Allestimento di colture algali

Trieste, 22 gennaio 2025