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Motivation of this presentation

Mesoscale extreme events are important atmospheric phenomena because they have
relevant impacts on:

® cnvironment and ecosystems
@® people and human activities

The exposure to mesoscale extreme events extends worldwide and it has high frequency

Atmospheric numerical models are requested to simulate such events

Future Weather
Climate Forecast
Scenarios
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Weather numerical models: from synoptic scale to mesoscale

Since the ENIAC age (1950s) we increased the numerical model spatial resolution
It is still the atmospheric modelling strategy
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What does to increase spatial resolution means?

Increasing spatial resolution means to simulate a wider range of atmospheric process
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The model is required:
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@ to deal with several typical scales
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@ to manage feedback between neighbour scales - <
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@ to reproduce interactions with boundaries

@ more detailed and reliable initial conditions ﬂ
@ finer boundary conditions
, Improve model:
@ more computation do be done .
& dynamics
In increasing the spatial resolution (so far) we achieved: 4 physics
@ higher quality weather forecasts i data assimilation
@ more detailed climatic scenarios i boundary processes
@ increased ability in satisfy stakeholders needs @ computation
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The quality of models: precipitation as benchmark

A good atmospheric model 1s a model that produces reliable simulations for phenomena
at all scales it 1s meant for.

Evaluation of the atmospheric model quality has to consider the complexity of phenomena
(wind, temperature, pressure, water phases, etc.)
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The quality of models: precipitation as benchmark

A good atmospheric model is a model that produces reliable simulations for phenomena
at all scales it 1s meant for.

~_

Evaluation of the atmospheric model quality has to consider the complexity of phenomena
(wind, temperature, pressure, water phases, etc.)

et e e e

Verification of a field that 1s the result of the evolution of several other fields is an approach
to the quality of atmospheric simulations

R = f (wind, temperature, pressure, water phases, i)

Since the early age of the weather numerical models, rainfall field has been a benchmark

Parametrization

convective precipitation
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Convective precipitation: a typical mesoscale and microscale process

Convective precipitation 1s produced by synergy of several atmospheric properties

Atmosphere
Boundary
v Interactions

Convective Precipitation

Extreme precipitation rates: up to 100 mm/h (20 mm/5min)
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Ability of WRF model to simulate meso-gamma precipitation field

Downscaling ECMWF (IFS) analysis with WRF model
@ Mid latitudes subcontinental domain — orography, land, sea lakes (Alpe-Adria region).
@ Time coverage 2010-2016 as a test period for a (2000 — last year) project
@ Spatial resolution 2 km
@ Outputs saved every | h
@ Nested domains technique — d03 convection fully resolved — Noah LSM — SST update
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Verification approach

Meso-gamma phenomena have an intrinsic spatial and time fluctuations
@ Numerical model should be able to reproduce such fluctuations
@ Measurements should be able to reveal such fluctuations

Verification is based on sets of time series belonging to the same area

Stazioni ed aree NAUSICA ver Areas are defied to be

- - - homogeneous for the
phenomenon fluctuations by
means of mesonetwork
measurements /\
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Quality of extreme rain rates: > 25 mm/h - the best performances
Empirical distributions for one year of events — each graph reports one validation area
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Quality of extreme rain rates: > 25 mm/h - the worst performances

Empirical distributions for one year of events — each graph reports one validation area
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Quality of extreme rain rates: > 10 mm/h - the best performances
Empirical distributions for one year of events — each graph reports one validation area
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Quality of extreme rain rates: > 10 mm/h - the worst performances
Empirical distributions for one year of events — each graph reports one validation area
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Conclusions

Downscaling GCMs simulations with LAMs demonstrates that nowadays cutting-edge
atmospheric models have physical, dynamical, feedback and boundary interaction

processes representation suitable to reproduce meso-gamma/micro-alpha phenomena (here
precipitation only was shown)

Increasing models spatial resolution is a good strategy to produce better and useful
atmospheric simulations.

w for both LAMs and GCMs

N

W at least down to micro-alpha atmospheric scale (phenomena)

N

w likely this strategy is going to characterize the next 20 years of research and
applications

This strategy is going to impact at least two areas of model application
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